Proof assistants enable users to develop machine-checked proofs regarding software-related properties. Unfortunately, the interactive nature of these proof assistants imposes most of the proof burden on the user, making formal verification a complex, and time-consuming endeavor. Recent automation techniques based on neural methods address this issue, but require good programmatic support for collecting data and interacting with proof assistants. This paper presents CoqPyt, a Python tool for interacting with the Coq proof assistant. CoqPyt improves on other Coq-related tools by providing novel features, such as the extraction of rich premise data. We expect our work to aid development of tools and techniques, especially LLM-based, designed for proof synthesis and repair.